Regeneration of Structured, Full-Thickness Skin, Including Hair Follicles

The tissue engineering company PolarityTE is claiming regrowth of correctly structured skin in pigs, incorporating hair follicles and various glands. The press release and company website are light on some of the more interesting details, such as just how close to natural skin the end result is in this case, but we shouldn’t have to wait too long to find out more. Clinical trials are starting this year.

PolarityTE, Inc. today announced pre-clinical results demonstrating that the Company’s lead product, SkinTE, regenerated full-thickness, organized skin and hair follicles in third degree burn wounds. The findings represent the first known successful regeneration of skin and hair in full-thickness swine wound models, the standard animal model for human skin. The Company expects to initiate a human clinical trial evaluating the autologous homologous SkinTE construct in the third quarter of 2017. In pre-clinical models of full-thickness burns and wounds, SkinTE demonstrated scar-less healing, hair follicle growth, immediate complete wound coverage, and the progressive regeneration of all skin layers including epidermis, dermis and hypodermal layers.

“These findings using SkinTE demonstrate an entirely new and pragmatic system whereby Polarity has used autologous tissue to regenerate full-thickness skin, hair follicles and appendages for the treatment of burns and wounds. Our revolutionary approach to a new form of regenerative healing offers hope to both burn and wound patients, as well as medical providers who have not seen a significant advance in skin regeneration since the 1980s.” Swine models of burns and wounds are known to be predictive of results found in humans due to the unique similarities between swine and human skin. Of note, it is believed that swine skin may be more difficult to regenerate with all layers and appendages (hair and glands), as was done in the studies by PolarityTE, suggesting that the results of these studies may predict similar efficacy in human patients when clinical trials begin later this year.




Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s